Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Anal Chem ; 95(50): 18352-18360, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38059473

RESUMO

Parkinson's disease (PD) is a highly prevalent neurodegenerative disorder affecting the motor system. However, the correct diagnosis of PD and atypical parkinsonism may be difficult with high clinical uncertainty. There is an urgent need to identify reliable biomarkers using high-throughput, molecular-specific methods to improve current diagnostics. Here, we present a matrix-assisted laser desorption/ionization mass spectrometry imaging method that requires minimal sample preparation and only 1 µL of crude cerebrospinal fluid (CSF). The method enables analysis of hundreds of samples in a single experiment while simultaneously detecting numerous metabolites with subppm mass accuracy. To test the method, we analyzed CSF samples from 12 de novo PD patients (that is, newly diagnosed and previously untreated) and 12 age-matched controls. Within the identified molecules, we found neurotransmitters and their metabolites such as γ-aminobutyric acid, 3-methoxytyramine, homovanillic acid, serotonin, histamine, amino acids, and metabolic intermediates. Limits of detection were estimated for multiple neurotransmitters with high linearity (R2 > 0.99) and sensitivity (as low as 16 pg/µL). Application of multivariate classification led to a highly significant (P < 0.001) model of PD prediction with a 100% classification rate, which was further thoroughly validated with a permutation test and univariate analysis. Molecules related to the neuromelanin pathway were found to be significantly increased in the PD group, indicated by their elevated relative intensities compared to the control group. Our method enables rapid detection of PD-related biomarkers in low sample volumes and could serve as a valuable tool in the development of robust PD diagnostics.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Tomada de Decisão Clínica , Incerteza , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Biomarcadores/líquido cefalorraquidiano , Neurotransmissores , Lasers
2.
Anal Chem ; 95(41): 15400-15408, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37804223

RESUMO

Thermal proteome profiling with label-free quantitation using ion-mobility-enhanced LC-MS offers versatile data sets, providing information on protein differential expression, thermal stability, and the activities of transcription factors. We developed a multidimensional data analysis workflow for label-free quantitative thermal proteome profiling (TPP) experiments that incorporates the aspects of gene set enrichment analysis, differential protein expression analysis, and inference of transcription factor activities from LC-MS data. We applied it to study the signaling processes downstream of melanocortin 3 receptor (MC3R) activation by endogenous agonists derived from the proopiomelanocortin prohormone: ACTH, α-MSH, and γ-MSH. The obtained information was used to map signaling pathways downstream of MC3R and to deduce transcription factors responsible for cellular response to ligand treatment. Using our workflow, we identified differentially expressed proteins and investigated their thermal stability. We found in total 298 proteins with altered thermal stability, resulting from MC3R activation. Out of these, several proteins were transcription factors, indicating them as being downstream target regulators that take part in the MC3R signaling cascade. We found transcription factors CCAR2, DDX21, HMGB2, SRSF7, and TET2 to have altered thermal stability. These apparent target transcription factors within the MC3R signaling cascade play important roles in immune responses. Additionally, we inferred the activities of the transcription factors identified in our data set. This was done with Bayesian statistics using the differential expression data we obtained with label-free quantitative LC-MS. The inferred transcription factor activities were validated in our bioinformatic pipeline by the phosphorylated peptide abundances that we observed, highlighting the importance of post-translational modifications in transcription factor regulation. Our multidimensional data analysis workflow allows for a comprehensive characterization of the signaling processes downstream of MC3R activation. It provides insights into protein differential expression, thermal stability, and activities of key transcription factors. All proteomic data generated in this study are publicly available at DOI: 10.6019/PXD039945.


Assuntos
Proteoma , Receptor Tipo 3 de Melanocortina , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo , Fatores de Transcrição , Teorema de Bayes , Proteômica , alfa-MSH/química , alfa-MSH/metabolismo
3.
Nucleic Acids Res ; 51(9): 4572-4587, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987847

RESUMO

RNA-binding proteins (RPBs) are deeply involved in fundamental cellular processes in bacteria and are vital for their survival. Despite this, few studies have so far been dedicated to direct and global identification of bacterial RBPs. We have adapted the RNA interactome capture (RIC) technique, originally developed for eukaryotic systems, to globally identify RBPs in bacteria. RIC takes advantage of the base pairing potential of poly(A) tails to pull-down RNA-protein complexes. Overexpressing poly(A) polymerase I in Escherichia coli drastically increased transcriptome-wide RNA polyadenylation, enabling pull-down of crosslinked RNA-protein complexes using immobilized oligo(dT) as bait. With this approach, we identified 169 putative RBPs, roughly half of which are already annotated as RNA-binding. We experimentally verified the RNA-binding ability of a number of uncharacterized RBPs, including YhgF, which is exceptionally well conserved not only in bacteria, but also in archaea and eukaryotes. We identified YhgF RNA targets in vivo using CLIP-seq, verified specific binding in vitro, and reveal a putative role for YhgF in regulation of gene expression. Our findings present a simple and robust strategy for RBP identification in bacteria, provide a resource of new bacterial RBPs, and lay the foundation for further studies of the highly conserved RBP YhgF.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , RNA Bacteriano , Proteínas de Ligação a RNA , Sequenciamento de Cromatina por Imunoprecipitação , Escherichia coli/genética , Escherichia coli/metabolismo , Eucariotos , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/metabolismo , Transcriptoma , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , Poliadenilação , Ligação Proteica
4.
J Proteome Res ; 22(4): 1377-1380, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36866861

RESUMO

We have used household consumables to facilitate electrochemical etching of stainless-steel hypodermic tubing to produce tapered-tip emitters suitable for electrospray ionization for use in mass spectrometry. The process involves the use of 1% oxalic acid and a 5 W USB power adapter, commonly known as a phone charger. Further, our method avoids the otherwise commonly used strong acids that entail chemical hazards: concentrated HNO3 for etching stainless steel, or concentrated HF for etching fused silica. Hence, we here provide a convenient and self-inhibiting procedure with minimal chemical hazards to manufacture tapered-tip stainless-steel emitters. We show its performance in metabolomic analysis with CE-MS of a tissue homogenate where the metabolites acetylcarnitine, arginine, carnitine, creatine, homocarnosine, and valerylcarnitine were identified, all with basepeak separated electropherograms, within <6 min of separation. The mass spectrometry data are freely available through the MetaboLight public data repository via access number MTBLS7230.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Aço Inoxidável , Espectrometria de Massas por Ionização por Electrospray/métodos , Eletroforese Capilar/métodos , Carnitina , Dióxido de Silício/química
5.
Anal Chem ; 95(2): 1149-1158, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36546842

RESUMO

Currently, fast liquid chromatographic separations at low temperatures are exclusively used for the separation of peptides generated in hydrogen deuterium exchange (HDX) workflows. However, it has been suggested that capillary electrophoresis may be a better option for use with HDX. We performed in solution HDX on peptides and bovine hemoglobin (Hb) followed by quenching, pepsin digestion, and cold capillary electrophoretic separation coupled with mass spectrometry (MS) detection for benchmarking a laboratory-built HDX-MS platform. We found that capillaries with a neutral coating to eliminate electroosmotic flow and adsorptive processes provided fast separations with upper limit peak capacities surpassing 170. In contrast, uncoated capillaries achieved 30% higher deuterium retention for an angiotensin II peptide standard owing to faster separations but with only half the peak capacity of coated capillaries. Data obtained using two different separation conditions on peptic digests of Hb showed strong agreement of the relative deuterium uptake between methods. Processed data for denatured versus native Hb after deuterium labeling for the longest timepoint in this study (50,000 s) also showed agreement with subunit interaction sites determined by crystallographic methods. All proteomic data are available under DOI: 10.6019/PXD034245.


Assuntos
Hidrogênio , Espectrometria de Massas por Ionização por Electrospray , Hidrogênio/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Deutério/química , Proteômica/métodos , Peptídeos/química , Eletroforese Capilar/métodos , Hemoglobinas/análise , Medição da Troca de Deutério
6.
Electrophoresis ; 44(1-2): 125-134, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398998

RESUMO

The chiral drug ketamine has long-lasting antidepressant effects with a fast onset and is also suitable to treat patients with therapy-resistant depression. The metabolite hydroxynorketamine (HNK) plays an important role in the antidepressant mechanism of action. Hydroxylation at the cyclohexanone ring occurs at positions 4, 5, and 6 and produces a total of 12 stereoisomers. Among those, the four 6HNK stereoisomers have the strongest antidepressant effects. Capillary electrophoresis with highly sulfated γ-cyclodextrin (CD) as a chiral selector in combination with mass spectrometry (MS) was used to develop a method for the enantioselective analysis of HNK stereoisomers with a special focus on the 6HNK stereoisomers. The partial filling approach was applied in order to avoid contamination of the MS with the chiral selector. Concentration of the chiral selector and the length of the separation zone were optimized. With 5% highly sulfated γ-CD in 20 mM ammonium formate with 10% formic acid and a 75% filling the four 6HNK stereoisomers could be separated with a resolution between 0.79 and 3.17. The method was applied to analyze fractionated equine urine collected after a ketamine infusion and to screen the fractions as well as unfractionated urine for the parent drug ketamine and other metabolites, including norketamine and dehydronorketamine.


Assuntos
Ketamina , Animais , Cavalos , Estereoisomerismo , Espectrometria de Massas , Eletroforese Capilar/métodos , Sulfatos
7.
J Proteome Res ; 21(4): 1167-1174, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35293755

RESUMO

Filter-aided sample preparation (FASP) is widely used in bottom-up proteomics for tryptic digestion. However, the sample recovery yield of this method is limited by the amount of the starting material. While ∼100 ng of digested protein is sufficient for thorough protein identification, proteomic information gets lost with a protein content <10 µg due to incomplete peptide recovery from the filter. We developed and optimized a flexible well-plate µFASP device and protocol that is suitable for an ∼1 µg protein sample. In 1 µg of HeLa digest, we identified 1295 ± 10 proteins with µFASP followed by analysis with liquid chromatography-mass spectrometry. In contrast, only 524 ± 5 proteins were identified with the standard FASP protocol, while 1395 ± 4 proteins were identified in 20 µg after standard FASP as a benchmark. Furthermore, we conducted a combined peptidomic and proteomic study of single pancreatic islets with well-plate µFASP. Here, we separated neuropeptides and digested the remaining on-filter proteins for bottom-up proteomic analysis. Our results indicate inter-islet heterogeneity for the expression of proteins involved in glucose catabolism, pancreatic hormone processing, and secreted peptide hormones. We consider our method to provide a useful tool for proteomic characterization of samples where the biological material is scarce. All proteomic data are available under DOI: 10.6019/PXD029039.


Assuntos
Ilhotas Pancreáticas , Proteômica , Cromatografia Líquida/métodos , Humanos , Ilhotas Pancreáticas/química , Espectrometria de Massas , Proteínas/análise , Proteômica/métodos
8.
ACS Chem Neurosci ; 12(13): 2529-2541, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34170117

RESUMO

Alzheimer's disease is the most common neurodegenerative disorder characterized by the pathological aggregation of amyloid-ß (Aß) peptide. A potential therapeutic intervention in Alzheimer's disease is to enhance Aß degradation by increasing the activity of Aß-degrading enzymes, including neprilysin. The somatostatin (SST) peptide has been identified as an activator of neprilysin. Recently, we demonstrated the ability of a brain-penetrating SST peptide (SST-scFv8D3) to increase neprilysin activity and membrane-bound Aß42 degradation in the hippocampus of mice overexpressing the Aß-precursor protein with the Swedish mutation (APPswe). Using LC-MS, we further evaluated the anti-Alzheimer's disease effects of SST-scFv8D3. Following a triple intravenous injection of SST-scFv8D3, the LC-MS analysis of the brain proteome revealed that the majority of downregulated proteins consisted of mitochondrial proteins regulating fatty acid oxidation, which are otherwise upregulated in APPswe mice compared to wild-type mice. Moreover, treatment with SST-scFv8D3 significantly increased hippocampal levels of synaptic proteins regulating cell membrane trafficking and neuronal development. Finally, hippocampal concentrations of growth-regulated α (KC/GRO) chemokine and degradation of neuropeptide-Y were elevated after SST-scFv8D3 treatment. In summary, our results demonstrate a multifaceted effect profile in regulating mitochondrial function and neurogenesis following treatment with SST-scFv8D3, further suggesting the development of Alzheimer's disease therapies based on SST peptides.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Proteoma , Somatostatina
9.
J Sep Sci ; 41(1): 385-397, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28922569

RESUMO

This review presents an overview and recent progress of strategies for detecting isomerism in peptides, with focus on d/l epimerization and the various isomers that the presence of an aspartic acid residue may yield in a protein or peptide. While mass spectrometry has become a majorly used method of choice within proteomics, isomerism is inherently difficult to analyze because it is a modification that does not yield any change in mass of the analyte. Here, several techniques used for analysis of peptide isomerism are discussed, including enzymatic assays, liquid chromatography, and capillary electrophoresis. Recent progress in method development using mass spectrometry is also discussed, including labeling strategies, fragmentation techniques, and ion-mobility spectrometry.


Assuntos
Cromatografia Líquida , Eletroforese Capilar , Peptídeos/química , Animais , Ácido Aspártico/química , Hidrólise , Íons , Isomerismo , Espectrometria de Massas , Proteínas/química , Proteômica , Tripsina/química
10.
J Am Chem Soc ; 139(20): 6851-6854, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28481522

RESUMO

The rate of hydrogen-deuterium exchange (HDX) in aqueous droplets of phenethylamine has been determined with submillisecond temporal resolution by mass spectrometry using nanoelectrospray ionization with a theta-capillary. The average speed of the microdroplets is measured using microparticle image velocimetry. The droplet travel time is varied from 20 to 320 µs by changing the distance between the emitter and the heated inlet to the mass spectrometer and the voltage applied to the emitter source. The droplets were found to accelerate by ∼30% during their observable travel time. Our droplet imaging shows that the theta-capillary produces two Taylor cone-jets (one per channel), causing mixing to take place from droplet fusion in the Taylor spray zone. Phenethylamine (ϕCH2CH2NH2) was chosen to study because it has only one functional group (-NH2) that undergoes rapid HDX. We model the HDX with a system of ordinary differential equations. The rate constant for the formation of -NH2D+ from -NH3+ is 3660 ± 290 s-1, and the rate constant for the formation of -NHD2+ from -NH2D+ is 3330 ± 270 s-1. The observed rates are about 3 times faster than what has been reported for rapidly exchangeable peptide side-chain groups in bulk measurements using stopped-flow kinetics and NMR spectroscopy. We also applied this technique to determine the HDX rates for a small 10-residue peptide, angiotensin I, in aqueous droplets, from which we found a 7-fold acceleration of HDX in the droplet compared to that in bulk solution.


Assuntos
Medição da Troca de Deutério , Fenetilaminas/análise , Água/química , Nanotecnologia , Tamanho da Partícula , Espectrometria de Massas por Ionização por Electrospray
11.
Anal Chem ; 88(23): 11868-11876, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27788334

RESUMO

A receptor binding class of d-amino acid-containing peptides (DAACPs) is formed in animals from an enzymatically mediated post-translational modification of ribosomally translated all-l-amino acid peptides. Although this modification can be required for biological actions, detecting it is challenging because DAACPs have the same mass as their all-l-amino acid counterparts. We developed a suite of mass spectrometry (MS) protocols for the nontargeted discovery of DAACPs and validated their effectiveness using neurons from Aplysia californica. The approach involves the following three steps, with each confirming and refining the hits found in the prior step. The first step is screening for peptides resistant to digestion by aminopeptidase M. The second verifies the presence of a chiral amino acid via acid hydrolysis in deuterium chloride, labeling with Marfey's reagent, and liquid chromatography-mass spectrometry to determine the chirality of each amino acid. The third involves synthesizing the putative DAACPs and comparing them to the endogenous standards. Advantages of the method, the d-amino acid-containing neuropeptide discovery funnel, are that it is capable of detecting the d-form of any common chiral amino acid, and the first two steps do not require peptide standards. Using these protocols, we report that two peptides from the Aplysia achatin-like neuropeptide precursor exist as GdYFD and SdYADSKDEESNAALSDFA. Interestingly, GdYFD was bioactive in the Aplysia feeding and locomotor circuits but SdYADSKDEESNAALSDFA was not. The discovery funnel provides an effective means to characterize DAACPs in the nervous systems of animals in a nontargeted manner.


Assuntos
Aminoácidos/análise , Aplysia/química , Neuropeptídeos/análise , Aminoácidos/metabolismo , Animais , Aplysia/citologia , Aplysia/metabolismo , Antígenos CD13/metabolismo , Espectrometria de Massas , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeos/metabolismo
12.
ACS Chem Biol ; 11(9): 2588-95, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27414158

RESUMO

Measuring the chemical composition of individual cells in mammalian organs can provide critical insights toward understanding the mechanisms leading to their normal and pathological function. In this work, single cell heterogeneity of islets of Langerhans is characterized with high throughput by microscopy-guided single cell matrix-assisted laser desorption/ionization mass spectrometry. Two levels of chemical heterogeneity were observed from the analysis of more than 3000 individual cells. Within a single islet, cellular heterogeneity was evident from the exclusive expression of the canonical biomarkers glucagon, insulin, pancreatic polypeptide (PP), and somatostatin within α-, ß-, γ-, and δ-cells, respectively. We localized the neuropeptide WE-14, a known cell-to-cell signaling molecule, to individual δ-cells. Moreover, several unreported endogenous peptides generated by dibasic site cleavages of PP were detected within individual γ-cells. Of these, PP(27-36) was previously shown to activate the human Y4 receptor, suggesting it has a signaling role in vivo. Heterogeneity in cell composition was also observed between islets as evidenced by a 50-fold larger α-cell population in islets of the dorsal pancreas compared to the ventral-derived pancreatic islets. Finally, PP(27-36) was more abundant in γ-cells from the ventral region of the pancreas, indicating differences in the extent of PP-prohormone processing in the two regions of the pancreas.


Assuntos
Ilhotas Pancreáticas/metabolismo , Peptídeos/metabolismo , Animais , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Anal Chem ; 88(12): 6195-8, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27249533

RESUMO

We developed a technique to monitor spatially confined surface reactions with mass spectrometry under ambient conditions, without the need for voltage or organic solvents. Fused-silica capillaries immersed in an aqueous solution, positioned in close proximity to each other and the functionalized surface, created a laminar flow junction with a resulting reaction volume of ∼5 pL. The setup was operated with a syringe pump, delivering reagents to the surface through a fused-silica capillary. The other fused-silica capillary was connected to a Venturi easy ambient sonic-spray ionization source, sampling the resulting analytes at a slightly higher flow rate compared to the feeding capillary. The combined effects of the inflow and outflow maintains a chemical microenvironment, where the rate of advective transport overcomes diffusion. We show proof-of-concept where acetylcholinesterase was immobilized on an organosiloxane polymer through electrostatic interactions. The hydrolysis of acetylcholine by acetylcholinesterase into choline was monitored in real-time for a range of acetylcholine concentrations, fused-silica capillary geometries, and operating flow rates. Higher reaction rates and conversion yields were observed with increasing acetylcholine concentrations, as would be expected.


Assuntos
Acetilcolinesterase/metabolismo , Colina/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Acetilcolina/metabolismo , Acetilcolinesterase/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Polímeros/química , Dióxido de Silício/química
14.
Anal Chem ; 88(10): 5453-61, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27110027

RESUMO

We have developed a new ambient-ionization mass spectrometric technique named laser desorption/ionization droplet delivery mass spectrometry (LDIDD-MS). LDIDD-MS permits high-resolution, high-sensitivity imaging of tissue samples as well as measurements of both single-cell apoptosis and live-cell exocytosis. A pulsed (15 Hz) UV laser beam (266 nm) is focused on a surface covered with target analytes to trigger their desorption and ionization. A spray of liquid droplets is simultaneously directed onto the laser-focused surface region to capture the ionized analytes and deliver them to a mass spectrometer. The approach of rapid and effective capturing of molecules after laser desorption/ionization allows the limit of detection for the amino acid lysine to be as low as 2 amol under ambient ionization conditions. Two-dimensional maps of the desorbed/ionized species are recorded by moving the sample on an XY translational stage. The spatial resolution for imaging with LDIDD-MS was determined to be 2.4 µm for an ink-printed pattern and 3 µm for mouse brain tissue. We applied LDIDD-MS to single-cell analysis of apoptotic HEK cells. Differences were observed in the profiles of fatty acids and lipids between healthy HEK cells and those undergoing apoptosis. We observed upregulation of phosphatidylcholine (PC) with a relatively shorter carbon chain length and downregulation of PC with a relatively longer carbon chain length. We also applied LDIDD-MS for a real-time direct measurements of live-cell exocytosis. The catecholamine dopamine and trace amines (phenethylamine and tyramine) were detected from live PC12 cells without damaging them.


Assuntos
Aminoácidos/análise , Encéfalo/patologia , Gotículas Lipídicas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Apoptose/fisiologia , Encéfalo/metabolismo , Dopamina/análise , Exocitose , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células PC12 , Fosfatidilcolinas/análise , Ratos
15.
Anal Chem ; 87(14): 7036-42, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26076060

RESUMO

Cell-to-cell variability and functional heterogeneity are integral features of multicellular organisms. Chemical classification of cells into cell type is important for understanding cellular specialization as well as organismal function and organization. Assays to elucidate these chemical variations are best performed with single cell samples because tissue homogenates average the biochemical composition of many different cells and oftentimes include extracellular components. Several single cell microanalysis techniques have been developed but tend to be low throughput or require preselection of molecular probes that limit the information obtained. Mass spectrometry (MS) is an untargeted, multiplexed, and sensitive analytical method that is well-suited for studying chemically complex individual cells that have low analyte content. In this work, populations of cells from the rat pituitary, the rat pancreatic islets of Langerhans, and from the Aplysia californica nervous system, are classified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI) MS by their peptide content. Cells were dispersed onto a microscope slide to generate a sample where hundreds to thousands of cells were separately located. Optical imaging was used to determine the cell coordinates on the slide, and these locations were used to automate the MS measurements to targeted cells. Principal component analysis was used to classify cellular subpopulations. The method was modified to focus on the signals described by the lower principal components to explore rare cells having a unique peptide content. This approach efficiently uncovers and classifies cellular subtypes as well as discovers rare cells from large cellular populations.


Assuntos
Peptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Aplysia/metabolismo , Cromatografia Líquida de Alta Pressão , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Sistema Nervoso/metabolismo , Peptídeos/classificação , Hipófise/citologia , Hipófise/metabolismo , Análise de Componente Principal , Ratos
16.
J Am Chem Soc ; 136(42): 14875-82, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25254316

RESUMO

Even though gain, loss, or modulation of ion channel function is implicated in many diseases, both rare and common, the development of new pharmaceuticals targeting this class has been disappointing, where it has been a major problem to obtain correlated structural and functional information. Here, we present a microfluidic method in which the ion channel TRPV1, contained in proteoliposomes or in excised patches, was exposed to limited trypsin proteolysis. Cleaved-off peptides were identified by MS, and electrophysiological properties were recorded by patch clamp. Thus, the structure-function relationship was evaluated by correlating changes in function with removal of structural elements. Using this approach, we pinpointed regions of TRPV1 that affect channel properties upon their removal, causing changes in current amplitude, single-channel conductance, and EC50 value toward its agonist, capsaicin. We have provided a fast "shotgun" method for chemical truncation of a membrane protein, which allows for functional assessments of various peptide regions.


Assuntos
Dispositivos Lab-On-A-Chip/métodos , Proteólise , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Ativação do Canal Iônico , Modelos Moleculares , Conformação Proteica , Propriedades de Superfície , Tripsina/metabolismo
17.
Mol Pain ; 9: 1, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23279936

RESUMO

The TRPV1 ion channel is expressed in nociceptors, where pharmacological modulation of its function may offer a means of alleviating pain and neurogenic inflammation processes in the human body. The aim of this study was to investigate the effects of cholesterol depletion of the cell on ion-permeability of the TRPV1 ion channel. The ion-permeability properties of TRPV1 were assessed using whole-cell patch-clamp and YO-PRO uptake rate studies on a Chinese hamster ovary (CHO) cell line expressing this ion channel. Prolonged capsaicin-induced activation of TRPV1 with N-methyl-D-glucamine (NMDG) as the sole extracellular cation, generated a biphasic current which included an initial outward current followed by an inward current. Similarly, prolonged proton-activation (pH 5.5) of TRPV1 under hypocalcemic conditions also generated a biphasic current including a fast initial current peak followed by a larger second one. Patch-clamp recordings of reversal potentials of TRPV1 revealed an increase of the ion-permeability for NMDG during prolonged activation of this ion channel under hypocalcemic conditions. Our findings show that cholesterol depletion inhibited both the second current, and the increase in ion-permeability of the TRPV1 channel, resulting from sustained agonist-activation with capsaicin and protons (pH 5.5). These results were confirmed with YO-PRO uptake rate studies using laser scanning confocal microscopy, where cholesterol depletion was found to decrease TRPV1 mediated uptake rates of YO-PRO. Hence, these results propose a novel mechanism by which cellular cholesterol depletion modulates the function of TRPV1, which may constitute a novel approach for treatment of neurogenic pain.


Assuntos
Colesterol/deficiência , Canais de Cátion TRPV/metabolismo , Animais , Células CHO , Capsaicina/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Colesterol/farmacologia , Cricetinae , Cricetulus , Temperatura Alta , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Porosidade , Prótons , beta-Ciclodextrinas/farmacologia
18.
Anal Chem ; 84(13): 5582-8, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22656064

RESUMO

We have developed a microfluidic flow cell where stepwise enzymatic digestion is performed on immobilized proteoliposomes and the resulting cleaved peptides are analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The flow cell channels consist of two parallel gold surfaces mounted face to face with a thin spacer and feature an inlet and an outlet port. Proteoliposomes (50-150 nm in diameter) obtained from red blood cells (RBC), or Chinese hamster ovary (CHO) cells, were immobilized on the inside of the flow cell channel, thus forming a stationary phase of proteoliposomes. The rate of proteoliposome immobilization was determined using a quartz crystal microbalance with dissipation monitoring (QCM-D) which showed that 95% of the proteoliposomes bind within 5 min. The flow cell was found to bind a maximum of 1 µg proteoliposomes/cm(2), and a minimum proteoliposome concentration required for saturation of the flow cell was determined to be 500 µg/mL. Atomic force microscopy (AFM) studies showed an even distribution of immobilized proteoliposomes on the surface. The liquid encapsulated between the surfaces has a large surface-to-volume ratio, providing rapid material transfer rates between the liquid phase and the stationary phase. We characterized the hydrodynamic properties of the flow cell, and the force acting on the proteoliposomes during flow cell operation was estimated to be in the range of 0.1-1 pN, too small to cause any proteoliposome deformation or rupture. A sequential proteolytic protocol, repeatedly exposing proteoliposomes to a digestive enzyme, trypsin, was developed and compared with a single-digest protocol. The sequential protocol was found to detect ~65% more unique membrane-associated protein (p < 0.001, n = 6) based on peptide analysis with LC-MS/MS, compared to a single-digest protocol. Thus, the flow cell described herein is a suitable tool for shotgun proteomics on proteoliposomes, enabling more detailed characterization of complex protein samples.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Peptídeos/análise , Proteolipídeos/química , Animais , Células CHO , Cromatografia Líquida , Colagenases/metabolismo , Cricetinae , Desenho de Equipamento , Eritrócitos/química , Humanos , Hidrodinâmica , Proteínas Imobilizadas/química , Proteínas Imobilizadas/isolamento & purificação , Proteínas Imobilizadas/metabolismo , Peptídeo Hidrolases/metabolismo , Proteolipídeos/isolamento & purificação , Proteolipídeos/metabolismo , Espectrometria de Massas em Tandem
19.
Anal Chem ; 82(11): 4529-36, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20443547

RESUMO

We report on a free-standing microfluidic pipette made in poly(dimethylsiloxane) having a circulating liquid tip that generates a self-confining volume in front of the outlet channels. The method is flexible and scalable as the geometry and the size of the recirculation zone is defined by pressure, channel number, and geometry. The pipette is capable of carrying out a variety of complex fluid processing operations, such as mixing, multiplexing, or gradient generation at selected cells in cell and tissue cultures. Using an uptake assay, we show that it is possible to generate dose-response curves in situ from adherent Chinese hamster ovary cells expressing proton-activated human transient receptor potential vanilloid (hTRPV1) receptors. Using confined superfusion and cell stimulation, we could activate hTRPV1 receptors in single cells, measure the response by a patch-clamp pipette, and induce membrane bleb formation by exposing selected groups of cells to formaldehyde/dithiothreitol-containing solutions, respectively. In short, the microfluidic pipette allows for complex, contamination-free multiple-compound delivery for pharmacological screening of intact adherent cells.


Assuntos
Técnicas Analíticas Microfluídicas , Farmacologia/instrumentação , Animais , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Dimetilpolisiloxanos/química , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos , Humanos , Canais de Cátion TRPV/metabolismo
20.
Biochemistry ; 48(7): 1442-4, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19161310

RESUMO

The effect of DNA supercoiling on a sterically very demanding threading intercalation process is investigated here. We find that the threading rate of a dimeric ruthenium complex into a negatively supercoiled plasmid at low binding density is 2 orders of magnitude higher than into the cleaved linear form. Further saturation is on the other hand kinetically hampered in comparison to the relaxed DNA. We also observe that threading kinetics correlates with the inhibition of luciferase expression from the plasmid construct. The results show how the target torsional strain can function as a control of DNA threading kinetics and gene expression efficiency.


Assuntos
DNA Super-Helicoidal/química , Substâncias Intercalantes/química , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...